Department of Energy and Sustainable Energy
Answer All questionsMathematics IV
Mid-Term Exam 1
March 30, 2015Mid-Term Exam 1
March 30, 2015[1] Prove that: If D is the differential operator with respect to x, F(D) is a polynomial of
D, f(x) is differentiable function and k is constant. Then
F(D)[f(x)e^{kx}] = e^{kx}F(D + k)f(x)15 Marks[2]Solve the following equations:
(a)
$$xy dx + (3 + y)dy = 0$$

(b) $(y + xe^y)dy + (x + e^y)dx = 0$
(c) $y' + \frac{1}{x}y = \frac{2}{x^2}$
(d) $(D^2 - 3D - 4)y = e^x + e^{4x}$
(e) $(D^2 + 4)y = (\sin x + \cos x)^2$
(f) $(x^2D^2 - xD + 2)y = \ln x$ *Good Luck*Dr. Mohamed Eid

Department of Energy and Sustainable Energy Mathematics IV Mid-Term Exam 1 Duration: 45 Minutes March 30, 2015 15 Marks Answer All questions [1] Prove that: If D is the differential operator with respect to x, F(D) is a polynomial of D, f(x) is differentiable function and k is constant. Then $F(D)[f(x)e^{kx}] = e^{kx}F(D+k)f(x)$ [2]Solve the following equations: (b) $(y + xe^y)dy + (x + e^y)dx = 0$ (a) $xy \, dx + (3+y) dy = 0$ (c) $y' + \frac{1}{x}y = \frac{2}{x^2}$ (d) $(D^2 - 3D - 4)y = e^x + e^{4x}$ (e) $(D^2 + 4)y = (\sin x + \cos x)^2$ (f) $(x^2D^2 - xD + 2)y = \ln x$ Good Luck Dr. Mohamed Eid

Department of Energy and Sustainable Energy
Answer All questionsMathematics IV
March 30, 2015Mid-Term Exam 2
March 30, 2015[1] Prove that: If f(t) is function with Laplace transformation F(s). Then
$$L\left\{\int_0^t f(t) dt\right\} = \frac{1}{s} F(s)$$
[2]Find Laplace transformation of the following:
(a) $f(t) = t + \sin 3t$ (b) $f(t) = \sinh t + e^t \cos 2t$ (c) $f(t) = (t + 2^t)^2$
(d) $f(t) = (t - 2)^8$, $t > 2$ (e) $f(t) = (\sin t + \cos t)^2$ (f) $f(t) = \frac{\sin 2t}{t}$ [3]Find the integral: $\int_0^\infty \frac{\cos t - \cos 3t}{t} dt$
(b)Find the inverse Laplace transform of: (i) $F(s) = \frac{s-4}{s^2+4}$ (ii) $F(s) = \frac{s+3}{s^2-3s+2}$ *Good Luck*Dr. Mohamed Eid

Department of Energy and Sustainable Energy
Answer All questionsMathematics IV
MinutesMid-Term Exam 2
March 30, 201510 Marks[1] Prove that: If f(t) is function with Laplace transformation F(s). Then
 $L\left\{\int_0^t f(t) dt\right\} = \frac{1}{s}F(s)$ [2]Find Laplace transformation of the following:
(a) $f(t) = t + \sin 3t$
(b) $f(t) = \sinh t + e^t \cos 2t$
(c) $f(t) = (t + 2^t)^2$
(d) $f(t) = (t - 2)^8$, t > 2
(e) $f(t) = (\sin t + \cos t)^2$
(f) $f(t) = \frac{\sin 2t}{t}$ [3]Find the integral: $\int_0^\infty \frac{\cos t - \cos 3t}{t} dt$
(b)Find the inverse Laplace transform of: (i) $F(s) = \frac{s-4}{s^2+4}$
(ii) $F(s) = \frac{s+3}{s^2-3s+2}$ *Good Luck*Dr. Mohamed Eid

Benha University Faculty of Engineering – Shoubra Department of Energy and Sustainable Energy	n ine 10, 2015 3 hours	
Course: Mathematics 4 Code: EMP 202	II questions	
• The exam consists of one page	Total Mark: 40	
Question 1 Solve the following equations:	9	
Solve the following equations: (a) $y \sin x dx + (1 + y^2) dy = 0$	y)dx = 0	
(a) $y \sin x \ dx + (1 + y) \ dy = 0$ (c) $y = -2y - 3y = e^{-x} + 3^x$	y)ux = 0	
(c) $y^2 + 2y^2 + 3y^2 = c^2 + 3$ (c) $(D^2 + 4)y = 1 + \cos[2x]$		
Question 2 (a)Prove that: If f(t) is function with La	2	
$L\left\{\frac{f(t)}{t}\right\} = \int_{s}^{\infty} F(s) ds$		
(b)Find Laplace transformation of the following:		
(i) $f(t) = 3 + t^3 + \sinh 3t$ (ii)	4	
(iii) $f(t) = sin(t-3), t > 3$ (iv		
	$an^{-1}(s-2)$ 2	
(c)Find the inverse Laplace transform of: (i) $F(s) = \frac{s}{s^2 - 2s - 3}$ (ii) $F(s) = \tan^{-1}(s - 2)$ (d)Solve the equation: $y'' + 2y' + y = e^{-t}$, $y(0) = 0$, $y'(0) = 1$.		
Question 3		
(a)Find the root of the equation $x^3 + 3x - 10 = 0$ by using Newton method.		
(b)Construct the difference table to the following data.		
Hence find interpolation polynomial interpolate the function $y = f(x)$		
at the points (0, 1), (0.1, 1.32), (0.2, 1.68), (0.3, 2.08), (0.4, 2.52).		
Question 4	10	
(a)Approximate the integrals $\int_{0}^{1} \sqrt{1+x} dx$	the error	
by computing the exact value.		
(b)Solve the differential equation : y'		
using Euler method considering $h =$	by	
comparing your result.		
Good Luck Dr	í Abdsallam	